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ABSTRACT

.

! /i 4

The MGR[V] algorithm of Ries, Trottenberg and Winter, Algorithm 2.1

p of Braess and Algorithm 4,1 of Verflirth are all algorithms for the numerical

e

solution of the discrete Poisson equation based on red-black Gauss-Seidel

smoothing iterations. In this work Qe”tonsider,the extension of the MGR[O0]
method to:%h;fgeneral diffusion equation -V e+pVu = f7 In particular, for
the three grid scheme Qe extend/an interesting and important result of Ries,

Trottenberg and Winter whose results are based on Fourier analysis and hence

neTa V]

o

intrinsically limited to the case where Q "is a rectangle. Let @ be a

t - . .
general polygonal domain whose sides have slope i}, 0 and ® . Let eo

be the error before a single multigrid cygle,and,lﬁi_ws]-'be the error after

this cycle. Then ||e]||L 5_%-(1+Kh)||sollL where || denotes the
h h

I,
energy or operator norm. When p(x,y) = constant, then K = 0.

- —— —r / - ’

/ . - -




1. Introduction

The MGR[v] multigrid algorithms of Ries, Trottenberg and Winter [4],
the Algorithm 2.1 of Braess [1], [2] and Algorithm 4.1 of Verfirth [5]
are all algorithms for the numerical solution of the discrete Poisson
equation (the usual 5-point difference equations with Ax = Ay = h) based
on red-black Gauss-Seidel smoothing iterations. The analysis of [4] is

based on Fourier Analysis and is restricted to the case where the basic

domain @ is a square. The analysis of [1], [2] and [5] is for a bounded

< polygonal domain @ whose sides have slope + 1,0 and « and is based on
h certain energy estimates and a particular interpretation of the matrix equa-
tions. While this is not explicitly stated, this interpretation can be

viewed as a particular choice of I:, I:, Igh’ Iﬁh etc, the operators which

carry on the communication between the grids.
Recently, Kamowitz and Parter [3] considered a generalization of the
algorithms of Ries, Trottenberg and Winter and Braess. They consider the

general diffusion equation

f in Q,

Y o p(x,y)Vu
(1.1) "

[}

0 on 23R

plx,y) > pg > 0,

h H
H? Ih
i.e. imagining a different interpolation structure in the space SH, they

in general domains Q . Using a different choice of I than Braess,

employ other "Energy Estimates" to obtain the basic estimate - for a two

grid scheme: let €0 denote the error before a single multigrid cycle and

let e] denote the error after that complete multigrid cycle, then




1 1 0
(1.2) e HLh <z (1+kh) || € HLh

where the constant K depends only on p, and || 9p]| _» the « norm

of the gradient of p(x,y) and || lth denotes the operator or energy
norm. However, it is important to remark that despite the different
interpretation of the problem, in the case of constant diffusion coefficient
p(x,y) =1 we are dealing with exactly the same problem and the same itera-

tive method. The estimate (1.2) is thus a generalization of the estimates
1 _ 1
(1.3) p(MG) 23 p(MGR[0]) = >

of [1] and [4].
Another remarkable estimate of Ries, Trottenberg and Winter [4] is the
fact that, in the case of Poisson equation in the square, if a third grid

is introduced and one uses the MGR[0] method one obtains

(1.4) o(MGR[0], 3 grid) = 3.

In this report we obtain this estimate in the form (1.2) for the general dif-
fusion equation (1.1) in bounded polygonal domains Q whose sides have slope
, 0 or o=, We also require that the corners of Q belong to the coarsest
mesh. The constant K 1is a constant depending only on Pg» and the o« norm

const.

of the first and second derivatives of p(x,y). Moreoever, if p(x,y)
then K = 0. In general, throughout this paper K will denote such a constant.
In section 2 we formulate the problem and the basic three-grid multigrid

iteration. In particular we introduce the coarse grid operators LH’ LH’ LZh’

L

oh" In section 3 we develope more notation and recall some basic estimates
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of [3]. In this section the reader is introduced to a number of additional

. (v () () ~(1) : -
difference operators LH . LH . L2h , L2h . Qx’ Mx’ Lx . This plethora

of operators gets a bit confusing. However if one first concentrates on the

. case p(x,y) =1 (i.e., the Poisson equation) the situation simplifies. In

. 1 1 o 1, (1 101
this case LH = Lﬁ ), L2h = Léh) and (we always have) LH =5 ﬁ ) +-§L; ),

EZh = %Léa) +‘%E£;). Moreoever, in this case

———v

r

. - ()
T QT T
2h
‘ [QZh is the coarsest grid] and
}
[
M, = Eﬁ])l
/),

[QH is the intermediate grid]. Another observation which should be useful
is the fact that, in this case Es]) is the same difference operator as
L2h except for points in QH which are next to the boundary. Moreover,
these exceptional points are in QH/QZh not in QZh' This perturbation of
Eé]) causes a technical difficulty in the proof of lemma 5.2 even in this
simplest case. In all cases the introduction of the variable diffusion
coefficient p(x,y) introduces perturbation of the basic operators. However,
the essence of the proof of the main result [Theorem 5.1 or the estimate
(1.2)] is contained in the constant coefficient case. The analysis of the

algorithm is given in two parts, sections 4 and 5.

.................... T T N S
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2. The Problem

Given a (small) value h >0 let {(Xk’yj) =(kh,jh); k,j =0,+1,+2,...}

be the associated mesh points in the x -y plane. Let

(2.1) R0 = {(xk,yj); k+j = 1(mod 2)}
(2.2) RB = {(xk,yj); k=j=0 (mod 2)}
(2.3) RG = {(xk,yj); k=3=1 (mod 2)} .

Let i be a bounded polygonal domain in the plane whose sides have

slope +1,0, or =, and every corner point (x,y) of 3Q belongs to R

8
Define

(2.4a) Q = (ROURBURG) N Q

(2.4b) 30, = (RyURZ URL) N 30 '
(2.5a) 9y = (RgURL) N @ '
(2.5b) 3, = (RyUR,) N 39 | ;
(2.6a) Q= RB NQ H
(2.6b) 30y, = RyNQ . ]

For any function F(x,y) defined on 0 we write: '




. o e

-

PPy

T

(R Y S il S S ot o e saramn

(2.76) Fk,J = F(Xk,yJ) ’
(2.7b) Frag,j = Fllkeadhoyg)
(2.7¢) Fi,jog = FOxpa(3#a)h)

The algebraic problem to be solved is: Find a mesh function U = {Ukj}

defined on Qh U BQh which satisfies

(2.8a) [LhU]kj = ij , (xk,yj) € Qh

(2.8b) Ukj =0, (Xk’yj) ¢ 3,

where

(2.8c)  [LUl; = ;%'{pk-k,j[uk,j “Ukor,5d 7 Pr, W%, Vg1t

1
LR Rl R R T R N R

We turn to solution of these linear algebraic equations by a three-
grid method.

Let Sh’ SH,
Qh U th, QH U SQH 2H

respective boundaries BQh, N

S2h be the linear spaces of mesh functions defined on

and Q,,, U 3Q respectively which vanish on the

2h

1Y) We set up communication between

H* 2h °
Specifically we define the linear interpolation and pro-

jection operators I:, Igh’ I:, Igh as follows.

see the definition of I

these spaces.

The interpolation

2 of [3]) is given by

operator I: (
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h.
(2.9a) Iyt Sy =+ Sy
where
h - \
(2.9b) [IHU]kj = Ukj’ if (xk’yj) € QH U BQH

and, if (xk,yj) € Qh/QH, then

h -
(2.9¢) [T = = oy 3V *Pross, %k 5

CkJ
P, -ulk, -1 TPk, gk, g4
where
. = ., + .t . + . .
(2.54) ki T P PP, g Pk, P o’

Of course, if (xk,yj) € 32, /3%,  then
(2.9e) [thul,. =0

. mang .
The projection operator I: is defined by
2 1T
=3Iy

H
(2.10) Iy

Remark: The factor % in (2.10) is included merely to keep the method

consistent with the MGR[v] methods of [4].

The interpolation operator Igh is defined in a similar manner by

(2.11a) 1

2ht Son ” 3y




7
with
I
! H _ .
, (2.11b) [IZhU]kj = Ukj , if (Xk’yj) € QZh\JaQZh,
» and, if (Xk’yj) € QH/QZh... then
3
‘ 2.11e) 1hul = <= U +p u *
h - 2y T T P g ket 40 Pl ke g
)
b
* P, 5edk-1, 340 Py, sk, g1
p where
: -
: (211d) €5 = TPy o * Py, 3o * P, ot * Pt 3o

and, if (xk,yj) € BQH/BQZh , then

H -
(2.11e) [IZhU]kj = 0.
. . 2h .
The projection operator IH is given by
2h _ 1 H\T
(2.12) " = 5 (1)
Finally we define the "coarse grid" operators LH’ L2h . These are
t (2.13a) LH: Sy > SH
t where, if (Xk’yj) e 9
- 1 -
(2.130) [0dis = 52 CugVis ™~ Pro, gein g

= Patg, j-50ke1, -1 Photg, 40K=1, 541 T Pioty, 3ok, 51




and

(2.14a) Lopt Sop > Son

where, if (xh,yj) € QZh then

(2.14b) [L, Ul = ;:“2‘ Py 505 Y2, 53 7 Pust, 5%z, 5
* 4_;7 Py 3-100 5 Yk 523 Pi, 341 L0, je2 7

We are now ready to describe the three grid methods. Let B

non-singular linear operator defined on S

h

(2.15) Bh: Sh -~ Sh.
Let the smoothing operator Gh be defined by
(2.16a) 6, =1, - BIL

) h h h ~h
and assume that

(L G u,G u?’
h"h >"h
(2.]5[7) —'—(—W—i], VUeSh, U*O,
Algorithm
. 0
Step 1: Given u =« Sh’ form
~ 0 -1

(2.17) u = Ghu + Bh F.

k,j

k,J

]}

1} .

be a
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Step 2: Perform one odd relaxation step. That is, construct a via

A ~

(2.18a) Uy = Uy (Xk’yj) e
(2.18b) [Lhﬁ]kj =i Xeyy) e /9y,
ij =0, (xk,yj) € 3, .
Step 3: Set r=f-1L d, r, =1
Step 4: Let J be obtained as follows.

(2.19) @ij

Ds (Xi,yj) € QZh

(2.19b) [Lpr]iJ. Py » (xi,yj) e U/, .

) ~ ~ . +2h~
Step 5: Set 'y ry - LHw s Top = IH 'y

Step 6: Solve

1 ~ hea H
u + IH[‘P + 12h¢] .

Step 7: Set wu

Step 8: Set u] > u0 and return to step 1.

Observe that the red-black or odd-even nature of the basic equations means

that (2.18b) and (2.19b) are explicit equations for the determination of

~

“kj and wij respectively,
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3. Some Notation and Facts

let u,v ¢ S or SH or S2h . Then

h

(3.1) Cu,v) = ) I

where the sum is taken over all indices (k,j) so that (Xk’yj) € Q. or
QH or QZh respectively. Whenever it seems that further clarity is required

we will indicate the space by writing
(u,v)a, a=h or H or 2h.

Since Lh’ LH and L2h are positive definite operators we have the

inner products

(3.2) [u,v]a = <Lau,v>a , a=h or H or 2h.
Let
. H
(3.3a) Nh’ = Nullspace Ith - Sh
L h
(3.3b) R, := Range IjCsS_
o 2h
(3.3c) NH. = Nullspace I LH - SH
L H
Lemma 3.1: We have
(3.4a) S, =N, @R, , Sy = NH® Ry - -

et ok

.........................................
..................................
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In fact, Nh and Rh are Lh orthogonal; N

orthogonal. That is, if n ¢ Na’ w e Bia, a=h or H, then

H and RH are LH

(3.4b) [n,w]a = (Lan,ma =0 .
A function u ¢ Sh is in Rh if and only if
(3.5a) [Lhu]kj =0, (xk,yj) € Qh/QH.

A function v ¢ Sh is in Nh if and only if
(3.5b) Vi " 0, (xk,yj) € Q.

A function wu e SH ts in R if and only if

H
(3.6a) [LHu]k’j =0, (xk,yj) € B, /%, .
A function v ¢ SH is in NH if and only if

(3.6b) v, . =0, (xk,yj) € QZh'

kj

Proof: The assertions (3.5a) and (3.6a) follow from the definition of

I:, Igh etc. given by (2.9)-(2.12). The assertions (3.4a), (3.4b), (3.5b),
(3.6b) now follow immediately. See [3]. [} .
Let
(3.7a) Lo =1 ah,
(3.7b) Lot = 12N 10

Using the basic relations (2.10), (2.12) we see that
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h w2 _ ¢ <h cho 1 a

(3.7¢) ]IIHVHLh = (LhIHv,IHv>h =3 (LHv,v)H,

Hon2 o (Ho oH 1,0

(3.7d) ][IZhullLH = (LI U T U0y = 5 (L U0,
E The formulae (2.9), (2.10), (2.11), and (2.12) together with (3.5a) and
1 (3.6a) imply
! ~ 1 h
: (3.8a) LHu =3 LhIHu o
; H
S . _ 1 H

(3.8b) LoV = % LHIZhv‘

o

la)

The analysis of [3] is based on the following facts about LH’ L2h .

Lemma 3.2: There are operators Lﬁ]), Eﬁ1), L(]), t(]) such that:

2 2h
S o1 () L1 ()
(3.93) LH =3 LH +'2—LH ,
coo_ 1.0 1)
(3.90) Lon =72 Lan * 2 tan >

(1) . . .
The operator L, ' is based on the five points (xk,yj), (xk+],yj+]),
(xk_],yj+]), (xk_],yj_]), (xk+],yj_1). These are the same points on which

LH is based. The operator [é]) is based on the five points (xk,yj),

(Xge¥5)s (g poy3)s (gaygi0)s (Xpays o). If k2§ 20 (mod 2), these are
the same points on which L2h is based. Similarly, if k = j = 0 (mod 2),

......................................
...............

. - . e A .
. . . o .. . . - - . - . P U T .~- -.l * . .-! ‘.
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...... N N
<N N,
(k) (k)

The five point star for LH,Lé])

[ ]
(3) u [ ] n
]
® denotes a point in RB
: O denotes a point in R
(k)

(1)

Lan

. ~(1)
The five point star for LH s L2h’

Figure 1
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1
Lé;) is based on these same points. The operators L§1), Léh) are
"almost" the operators LH’ L2h‘ To be precise, we have: let

Prx iPro1 - P, s_3Proyx i
(3.10a) ak_;s oy = [ K-%,j7k-1,]-% + Kyj=%"k-¥,j-1 ,
> k-1,3 “k,j-1

(3.10b) SN L N BTN L I 2
ks, -3 R St g

(3:100)  dys = Ty o ¥ Bhon 5oy * Pt 3 * Doy, o) -

If (k+j) = 0 (mod 2), then

(1) =
(3.11) [LH U]kj = h2 {'ak+g,j+guk+1,j+1 - ak-%;i-kuk-l,j-]

+d

" Dpag joalien, o1 7 Py, el o1t dklig?

An easy computation shows that

2
2 . - .
128y g 5o = Proyg, sl S KN

2
|Dyasg go35 = Pras, jo3) < KN

Hence, for every U ¢ SH’

(3.12a) L0 = fDu | < oxn? Lo,

kn LMy oy

o (1)
(3.12b) LU, - <Ly o, | N

| A
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A basic estimate is: for every U ¢ SH,

(3.13) 0 < Ll Muur < 204m) M)

Hence, if we write

ool 11(2)
(3.14a) Ly=slytsly
then
(3.180)  =kn<L U, < (TBUW) < 201+kn) (LU

Similarly, let

(3.152) A . . = |kt isnPhede, g | Por joRPk-% )

(3.15) B . = |PkeindesPinsget | Py gl gt
-3+ B, 51 ke, 541

(3.15¢) ij = [Ak+1,j + Ak-],j + 8k,j+1 + Bk,j-1]

If, k=3 =0 (mod 2),

(3.16) Lé;) - L

2h

-8

{‘Ak+1,”k+z,J " 12, 7 B gnle,gee

-8B D

k,j”k,j} :

k,j-1%,5-2 *
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An easy calculation shows that

2
(3.17a) |2Ak+1,j 'pk+1,j|-i Kh® ,
2
(3.17b) IZBk,j+1 'pk,j+1|-i Kh™ .
Hence, for all U ¢ S2h
(1) 2 ‘
(3.17¢) |<L2h U,U>2h - (LZhU’U)ZhI < Kh (LZhU’U>2h'

The anolog of the basic estimate (3.13) holds. That is

(1) (1)
(3.18) 0 < (L5 'U,U) < 2(1+Kh) (L "u,U) .

Hence, if we write

P2 17(2) ]

(3.19a) Lan =7 Lon * 7 Lon :

then 'i

- ~(2) :

(3.19b) (-Kh) €Ly U,U) < (Lo U,UY < 2(14Kh KL, UL )

Of course, if p(x,y) =1, then %

(1) (1) i

0 _ 0 g

(3.20) LH = LH . L2h = L2h . ;
Proof: The construction of Lﬁ1) and the basic estimate (3.13) is found

in [3]. The construction of Lé;) and the estimate (3.18) then follows

from the same arguments. The estimates (3.11), (3.17) are direct computa-

tions. [}
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(3.21)

(3.22a)

(3.22b)

(3.22c)

(3.22d)

(3.22e)

...........

Qur next result looks at the operator H

Lemma 3

Budiuls Bt Bt B Sare S 4

i,

(1)

H is of the form

.3: The operator L

~(1) 1 [ -
[EH Uk T 2 TPz, T P, ite2,s

- B 1%, -2 "

The coefficients, A, B, D are given by

1 2
P, Pkt %9 + 2 (Prais, i) Okal,

ck+'l,j

Aar, s

1 2
- Py, iPr-% 5 4 7 Py g) Okt

A .
k-1 sJ Ck-] ,j

1 2
P inPioge s + 7 P ge) Bk g

k,Jj+1 k,j+

e+ ]]

1 2
. = pkaj'ﬁpk’j'a/z M 2 <pk:j';i) ekhj']
k,J-] Ck’j_]

(=2

D5 = Aar,i * Aar,i * Biyya1 * Bi, e

.....................
..........

R Twrwe

17

By, i+1%, j+2

Dk,jUk,j} .
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where
19 (Xu,yo) € th
(3.23) eu.O =
0, (xu,yc) ¢
Proof: These coefficients were computed in [3]. ]
Remark: If
eki1,j $+ 0, then Ukiz,j =0,
=0.

ek’jﬂ $ 0, then Uk,jiZ

Lemma 3.4: Let (Xk’yj) € Qy, - Then all 4 of its h grid neighbors

(xki'1 ,yj)’ (Xk,yjﬂ) € Qh . Hence

%ke1,5 7 Ok T 0
Proof: (See Figure 2). This result follows immediately from the fact
that all corner points of 3Q lie in RB‘ ]

It is useful to write Eé1) as the sum of two operators, one essentially

based on QZh and the other on Q,/0

H ™2h -~

T T T T r——eey
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| o =
O
n o = 0 ] o) [ o] " o)
/
[m] o] a
/
[ ] [ ] (o}
/
a (e} @] o
o] [ o [ |
0 a o a o) Q
] (o] ] (o] [
o [m] o] [w] (o]
[ ] o] [ ] (o) u
o] a (o] a (o]
[ Q ] (@] [ ]
Reentrant Corner
O denotes a point in R0
® denotes a point in RB
o denotes a point in RG
Figure 2
e - o T e e .-..\C*Im\.*ﬁ;}
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Definition: Let Mx’ Q. :S, >S5, bedefined by

x' °H "~ °H

(3.24a) [QXU]k,j =0, (xeyy) e 970,

(3.24b) D R TR ITS R CHRS I
(3.25a) [qu]k’j = [I£1)u]k’j s (Xpays) € /9,
(3.25b) UL 5 =0, (xoys) e 9y,

Lemma 3.5: Llet v e S Then

2h -

H v), - (L

H
(3.26) €Q LoV, TV, R

| < KNP CLyv,

Proof: The lemma follows from Lemma 3.4 and the estimates

= 2
[4A41,5 7 Pt gl S K0P g

"B 2
198y, 501 = Pyl S K0P g

Remark: When p(x,y) =1, then K= 0.

Finally, we "1ift" L2h (an operator defined on SZh) as follows: let

LX: S2h > SH be defined by
- H _
(3.27&) [LX(IZhV)]kj = 0 ’ (Xk,)’J) € QH/QZh )

- H _
(3.27b) [Lx(IZhv)]k,j = [LZhV]k,j . (Xh’yj) e Sop

Remark: Using this definition we may rephrase (3.26) as

H H = _H H 2,7 H H
(3.28) ](QXIZhv,IZhv)H - <Lx12hv,12hv>H[ < Kh® (L 1

Vol

v)H.

x 2h

WYY TTe Ty TTa T ™«




——

WI

21
4. Analysis I.
tet €2 =y - u¥ be the initial error. Then & =u - U is the error

after step 1, the smoothing step. Assumption (2.16) asserts that

0 0

(4.1) Hgnfh = (15,8 < (L0l - [|e°||ﬁh.

h

Using the decomposition (3.4a) we have

~ h
(4.2) € =n, + H*w, Ny, < Nh s W e SH'

From step 2 [i.e. (2.18)] of the algorithm and Lemma 3.1 [i.e. (3.5b)] we

see that
~ ~ h
(4.3) €=U - U= IPIW'
Hence, using (3.4a) we see that
apy @ h 2 2 h 2 ~ 2 0,2
(4.4) NENT = ll1gwlly < linglls + {lIgwlly = dlelly < el -
Ly RN = B HEML Ly Ly

Using (4.3) and (3.7a) and step 3 of the algorithm we see that
~ - H h _
(4.5) LHw = (IthIH)w = rH'

See [3] for a more complete discussion of the significance of this fact.

Lemma 4.1: Let v ¢ S be the solution of

H
(4.6) LHV =ry s LHw )
Let
) H
(4.7) voEon, ot IZhV . Ny € NH y Ve SZh'

..................................

LA dad el Padh S S A R/ A M SR S A e Siae gnn 4 o fr e de

[
1
4
4
4
i
\
J
]
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Let { be the function in S, constructed in step 4 [i.e. (2.19)] of

the algorithm. Then

(4.8) b = ny -

Proof: Observe that (2.19a) and (3.5b) imply that o ¢ N Also (2.19b)

e
and (4.6) yield

: ’ [LH(v-w)]k,\] =0 Y (xk’yJ) € QH/QZh .
P
[ That is
[e
L 4.9 (v-0) = [(ny-5) +1}
- ( . a) V"P) = [(T]H‘W +12hv] € ]RH
h while
- (4.9b) (ny=8) < N, .
E Using (3.4a) and (3.4b) we see that (4.8) holds. | ]
Consider the function ¢ which is constructed in step 6 of the algorithm.
b We have
_ ;2h A~y .2h, .H

(4.10) L2h¢ = IH LH(v-zp) = IH LHIZhv'

thus

(4.11) Lopd = LopV .

From (4.3), (4.11) and step 7 of the algorithm we see that
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1 1 h

(4.12) € =u-=-u = IH[(W-@) -Igh¢] ¢ Ry .

Thus, if we seek an eigenfunction eo, it must have the form

As we shall see, the generality of G, and the estimate (4.1) implies

' that it suffices to consider the case where G, =1, . In that case
¢

~ 0 _ the= o Hoq. -
(4.13) € =g = IH[nH+IZhUJ 5 My € NH , Ue S2h .

If a] = ueo (4.12) becomes

¢! = (R0 +15, (U-0)] = wIlR, +15,0] .
Thus
(4.14) b=y, =M, A= (1-w) .

Returning to Lemma 4.1 we have

~ - H
L (w +12hv) LH(nH +12hU)
(4.15)
Loade +10v) = LRy + 18 0)
HYATH 7 22 H\MH T 2n°/

From (3.8b), (3.6a), (4.11) and (4.14) we see that

(4.16a)

L, Zhv' = 2L,V = 29 = 2L, U

San

I
(]

H
(4.16b) LHIZthQ 1
H"™2h

...........................................

.................
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ChmnY

Thus, (4.16) and the definition of [X[i.e. (3.27)] allows us to rewrite
(4.15) as

- - _H N - H
(4.17) x[LHnH +2Lx12hU] = LH[nH +12hU] .

To simplify the eigenvalue problem (4.17) we define

L#: SH > SH
as follows: let v ¢ SH . Then there is a unique representation
(4.18a) vEg I, g e N, Wes, .
Then
(4.18b) Ly =Ly, v ol 1w
H>H X 2h

The eigenvalue problem (4.18) now becomes
# A

(4.19a) ALy = LHv s
- H

(4.19b) v=mn,*+ I2

Observe that both L# and LH are symmetric positive definite operators.

Therefore, there is a complete set of eigenfunctions {vk} which satisfy
# - _ .
(4.20) (L vk,vj) = (LHvk,vj> =0, k$j.

Then (3.7c) implies that

1
Il e “L
(4.21) —5— < max |[1-A] = max |u] .
10,
h
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Thus, in view of (4.1), the general three-grid iteration (G, t I)

also satisfies (4.21).
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5. Analysis II

Consider the basic eigenvalue problem (4.19). Let us now focus our

attention on the left-hand-side of (4.19a). Using (3.9a) and (4.19b) we

have
~ o1 (- 1,(1).H 17(1)= 17(1),H
(5.1a) LHv =3 LH y + 3 LH IZhU t 3 LH ny*3 LH IZhU’
and
" 1= ()= 1,- ,(1)H 1,- +(1)=
L) = 5 by ingd + 5 by T 00+ 5 CnpabytIng)

1

(1)- 1

1= 7(1)H 1 (1).H
(5.1b) + 5 (”H LH IZhU) + 3 ‘Ith LH nH) t 5 <12hu Ly IZhU)
1, H, ~(1)- T H, ~(1).H
+ 3 <12hu,LH nH> + §-<12hU,LH IZhU)

)

The basic estimate (3.12a) allows us to replace L£1 by L, provided

H
we accept error terms of the form

2 H - =~ 1%
(5.2a) 8p = Kh“[CL 15 U, 1, 0) CLn,h, 0 14,
2
(5.2b) 8, = Kn“(L IZhU 1
s wnly = =
(5.2¢) 63 = Kh (LHnH,nH).

Thus we may rewrite (5.1b) as

r _ 1= - 1 ..H
(v,LHv) =3 (nH,LHnH) + §'<IZhU LHIZhU)
(5.3)
1es tlh: LD g Loy i

ok ok ’
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where
(5.4) 0(8) = 0(61 +6, +63) .
{ From (3.6b) of Lemma (3.1) we see that
t
(ﬂH)k,J =0 s (Xk,yj) € QZh .
Hence
- (M= y L= o
(5.53) <nH9LH T]H> = (nH,Man> s
- ~(1)H - H
(5.5b) <nH’LH IZhU) = (nH,MxIZhU) .
Thus, we may rewrite (5.3) as
S ls Lasa Loty s lGoms
(Valgv? = g Cigslyny ) + 5 (Pl Ly To U + 5 (oM
- H 1 H H
(5.6) + (nH,MxIZhU> + §'(12hU’Mx12hU) +
1 H H
5 (15,0,Q,I5,U) +0(8) .
Let us consider the term
DRI

From (3.7b), (2.12) and (3.9b), (3.19b) we have

=yt =1 1y r(2)
(5.7b) J = (UL, U0, = 5 ULy U 5 4 5 (UL D,

PV TR TN LTS T I WL AT I I SRR IE T Wi

v e e . » .
A el I
. . . -

- . AR , ety PR M) S el AT N VAR VRN UL VL
S L T N A k. P R L Ny SRR, W A SIS I P WA Lt e e T e e AR |
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Thus, using the definition of Lx and (3.17c) we obtain

1 (2)
Y2 u’

(5.7¢) J = on Ulop -

(u,L

The estimate (3.28) allows us to replace Qx by Lx provided we accept

errors of the form

- 2 ,- .H H 2 H H
(5.8) 5§ = Kh <LX12hU,12hu> = Kh <LH12hU,12hu>.

Thus, we rewrite (5.6) as

foy + Ly L8y,

A
Cvolyvd = 5 €L 7 (Ul U0y

H
(5.9)

1

t3

Cv,Mv) +0(8) + 0(s) .

The eigenvalue problem (4.19) becomes

(5.10) (x-%) (v,Lfv) = %(u,téﬁ)w% + 2 (V.M 0D+ 0(643) .
Hence
A - % > -Kh2
and
(5.11) A > 5 (1-kn?)

The complete proof of our basic estimate requires a more detailed

analysis of the terms which appear in (5.10).
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Lemma 5.1: For all n ¢ NH we have

(5.12) 0 < <M n,n)< (14kh) (L n,nd .
Proof: Using the description of [é]) given in Lemma 3.3 we see that

(5.13) (M n.n) < ﬁ% ) pkj(]+Kh)(nkj)2.

On the other hand, since nkj =0 if (xk,yj) € QZh , (2.13b) shows that

1 o -
(5.14) (Lnn)=—57]c
H 2h2

kj(”kj
Thus, the lemma is proven.

Our next result is intuitively clear. Nevertheless, the details are

somewhat technical.

Lemma 5.2: For every U ¢ S2h , We have
H H H., - ,H
(5.15) (IZhU’MxIZhU)-i (1+Kh) <IZhU,Lx12hU> .

Proof: The idea behind the proof is quite simple. We have

- H _
(Lo iy = Toantli;  (xpoyy) < 2y,

o H n "
while [see (2.11)] {(IZhU)k,j} for (xk’yj) € Q,/9, 1s an "average" of

{Uou} with (xc,yu) € QZh . Since Mx and Lx are "almost" the same

.........
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operator, (5.15) should follow. The complete details of the proof are

given in the Appendix. [ |

Theorem 5.1: Consider the three grid iterative scheme described in

section 2: steps 1-8. Let

There is a constant K > 0, depending only on p(x,y) and its first

and second derivatives, such that
(5.16) e, <3 aemy) el

. L 2 Lh
J Moreover, if p(x,y) = const >0, then K =20,

Proof: iet (A,v) be an eigenvalue and eigenfunction of (4.19), or

equivalently, (4.17). As we have seen, (XA,v) satisfy (5.10) and (5.11)
holds. Expanding the terms of <v,Mxv) we have

1

‘ (5.17) R.H.5 = 1 ¢y, [{2) H

1 . - - - H H
oht7 [(nH,Man) + 2<nH,Mx12hU) + (IZhU,MxIZhU)]
+ 0(6+8) .

3 2n U

Using (3.19b), (3.27), Lemma 5.1 and Lemma 5.2 we have |

"y M Uy + 0(6+8)

H, : H - -
RAH.S < (14kh) (I3 UL 15, U0 + (RLM A + (1 oh

2h™’"x"2h

el

H - . H - - =
< (1+kn) [2 (IZhU,LXIZhU) + <nH,LHnH> 1 + 0(8+8) .
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Thus

(- %) Cv,lfvd < 0(6+3) + kn (v L)
Hence
(5.18) A <3 (1+kn)

Thus, (5.18) and (5.11) together with the remarks at the end of section 4

imply the theorem.

Te UG Y e vt
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Appendix

In this appendix we give the details of the proof of Lemma 5.2. We

(1)
H

give the form of Mx . A simple summation-by-parts argument shows that

use the formulae of Lemma 3.3 which give the form of L and hence

H Hyy o 1 o3 H H 2
G
] = H H 2
t2 RZBk.j+1[(I2hU)k,j+2'(IZhU)k,j] ’
G
* while
| H, = H 1 2
! ( ) = — -
F (A.2) Tantsbxlan?? = 72 RZBpk+1,j[Uk+2,j U, 4]
R a L PTLCpTeR s Ly
an? gy *od J »J
E Note: It is essential to observe that the sums in (A.1) are taken over
points (xk,yj) € RG while the sums in (A.2) are taken over points in
Ry . Moreover, if (xk,yj) ¢ Ry then
H -
(12hu)kj = U

Let j =1 (mod 2) be fixed and consider the contribution to the first
sum (on the right-hand-side) of (A.1) from the points on a connected segment

of the intersection of @ with the line y = jh . That is, we consider a sum
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"
_ 1 - H _¢H 2
(A.3) [ = 2 rg; Aor, o0 gpin, 5 = HopUloeq 537 -
0

For rqg<r<ry -1 all the points (x2r+],y.) e 2. The points

(x2r0-1’yj)’ (x *ar 417 ) may lie on 32 or may lie outside 00

depending on the slope of the boundary near these points. In either

H u)

case (I2h

= 0,
2r0

Consider the contribution of such an "end-point" to the sum Zj

M
1,5 (IZhU)2r1+1,j

(See Fig. 3). For definiteness, consider the term

] H 2
(A-4) LD - TgnWzr 1,50 -

J
2r 0° 0

0’\]‘
We should consider two cases, either the boundary has slope <« near

(x ZFO’ J.) or slope + 1. When the siope is + 1, then leO,j =0 and
the analysis is much 1ike the case when both (x2 +],y‘]_), (x2r—1’yj) c Q.

However, when the slope is «, then 6, .t 0 (seeFig. 2). In this

rgsJ
case
H -
(IZhU)ZrO_]’j =0,
H (1+Kh
I(IZhU)2r0+1,jl [|U2r0+2,j+1l + |U2r0+2,j-1|]’
and
0<A <3 (1+kn)p
2rp.d =8 2rotl gl e

*Near a reentrant corner with angle 45° one of these points may actually
lie on 93Q while the segment from its neighbor, say (x2 i), is
r0+1 J

not entirely in Q. Nevertheless, U = 0 at that point.

...............
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Hence

2

3.1

o i <76 Z‘(]+Kh){p2ro+l,J+1[U2ro+2’i+‘ “Varg,in]

2r0,J
(A.5) )
. .4 -U . .

* p2r0+2,3-1[u2r0+2,3-1 ZrO,J-1] }

Now, consider a term

_ H H 2
(A.6) Ior,i ™ Por, iU 2rn 5 - UanWoros 5
where o <r <oy We write
L H H
s = Uoplop 5 - UapWoey
as a sum of four terms
s = 01ge 0250 By e ¥ D250
where - up to terms of order h2
(A7a) b . = 2rtheaits - Tary, gy

1,341 4;:'2”],j U2r+2,j+1 4p2r-1,j 2r,j+1°

Porys, i+ Por-3%, i+
(A.7b) D, .., = -t - 2,077 .
2,j+] 4p2r+1,j 2r,j+] 4p2r—1,j 2r-2,j+1
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Indeed, expanding the coefficients about (xzr,yj) yields

e

U

lIr,j 4 2r+2,+1 ~ 2r,j+1| ¥ IU2r,j+1 N 2r-2,j+1|

t Upni2,521 “Vap 51l o 501 =V 501

P

Hence

1+Kh {

2
Jor,3 < T8 17+

p2r+1,j+][uzr+2,j+] 'UZr,j+1

U 2

2
Por-1,541002r 541 “Y2r-2,5419 * Pora1, 51802042, 51 ~V2p 5-1

2
Uppoz,5-13 1 -

Por-1,j-1t0p 51 -
Upon adding the contribution from each j 1line, we see that each

term

1

o Pors1,34102r42, 541 7Y

2
2r,j+]]

enters at most 4 times. Since each such term has a coefficient which is

less than or equal to (1+Kh)/4, the lemma is proven. ]
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